1,347 research outputs found

    Coherent Neutral Current Neutrino-Nucleus Scattering at a Spallation Source; a Valuable Experimental Probe

    Full text link
    The coherent contribution of all neutrons in neutrino nucleus scattering due to the neutral current is examined considering the Spallation Neutron Source (SNS) as a source of neutrinos. SNS is a prolific pulsed source of electron and muon neutrinos as well as muon antineutrinos.Comment: 15 LaTex pages, 14 figures, 3 Table

    Backward Raman compression of x-rays in metals and warm dense matters

    Full text link
    Experimentally observed decay rate of the long wavelength Langmuir wave in metals and dense plasmas is orders of magnitude larger than the prediction of the prevalent Landau damping theory. The discrepancy is explored, and the existence of a regime where the forward Raman scattering is stable and the backward Raman scattering is unstable is examined. The amplification of an x-ray pulse in this regime, via the backward Raman compression, is computationally demonstrated, and the optimal pulse duration and intensity is estimated.Comment: 4 pages, 3 figures, submitted to PR

    Inter-valley plasmons in graphene

    Full text link
    The spectrum of two-dimensional (2D) plasma waves in graphene has been recently studied in the Dirac fermion model. We take into account the whole dispersion relation for graphene electrons in the tight binding approximation and the local field effects in the electrodynamic response. Near the wavevectors close to the corners of the hexagon-shaped Brillouin zone we found new low-frequency 2D plasmon modes with a linear spectrum. These "inter-valley" plasmon modes are related to the transitions between the two nearest Dirac cones.Comment: 4 pages, 2 figures; submitted in PR

    Suppression of Landau damping via electron band gap

    Full text link
    The pondermotive potential in the X-ray Raman compression can generate an electron band gap which suppresses the Landau damping. The regime is identified where a Langmuir wave can be driven without damping in the stimulated Raman compression. It is shown that the partial wave breaking and the frequency detuning due to the trapped particles would be greatly reduced.Comment: 4 pages, 5 figure

    XENON10/100 dark matter constraints in comparison with CoGeNT and DAMA: examining the Leff dependence

    Full text link
    We consider the compatibility of DAMA/LIBRA, CoGeNT, XENON10 and XENON100 results for spin-independent (SI) dark matter Weakly Interacting Massive Particles (WIMPs), particularly at low masses (~ 10 GeV), assuming a standard dark matter halo. The XENON bounds depend on the scintillation efficiency factor Leff for which there is considerable uncertainty. Thus we consider various extrapolations for Leff at low energy. With the Leff measurements we consider, XENON100 results are found to be insensitive to the low energy extrapolation. We find the strongest bounds are from XENON10, rather than XENON100, due to the lower energy threshold. For reasonable choices of Leff and for the case of SI elastic scattering, XENON10 is incompatible with the DAMA/LIBRA 3σ\sigma region and severely constrains the 7-12 GeV WIMP mass region of interest published by the CoGeNT collaboration.Comment: 23 pages, 9 figures. Version 2: more careful treatment of XENON10 efficiencies, expanded discussion. A response to arXiv:1006.2031 is found in the Appendi

    A survey of energy loss calculations for heavy ions between 1 and 100 keV

    Get PDF
    The original Lindhard-Scharff-Schi{\o}tt (LSS) theory and the more recent Tilinin theory for calculating the nuclear and electronic stopping powers of slow heavy ions are compared with predictions from the SRIM code by Ziegler. While little discrepancies are present for the nuclear contribution to the energy loss, large differences are found in the electronic one. When full ion recoil cascade simulations are tested against the elastic neutron scattering data available in the literature, it can be concluded that the LSS theory is the more accurate.Comment: Presented at the 10th International Symposium on Radiation Physics, 17-22 September, 2006, Coimbra, Portugal; style corrections, small change to fig.

    Theory of plasmon decay in dense plasmas and warm dense matter

    Full text link
    The decay of the Langmuir waves in dense plasmas is not accurately predicted by the prevalent Landau damping theory. A dielectric function theory is introduced, predicting much higher damping than the Landau damping theory. This strong damping is in better agreement with the experimentally observed data in metals. It is shown that the strong plasmon decay leads to the existence of a parameter regime where the backward Raman scattering is unstable while the forward Raman scattering is stable. This regime may be used to create intense x-ray pulses, by means of the the backward Raman compression. The optimal pulse duration and intensity is estimated

    Measurement of the quenching factor of Na recoils in NaI(Tl)

    Full text link
    Measurements of the quenching factor for sodium recoils in a 5 cm diameter NaI(Tl) crystal at room temperature have been made at a dedicated neutron facility at the University of Sheffield. The crystal has been exposed to 2.45 MeV mono-energetic neutrons generated by a Sodern GENIE 16 neutron generator, yielding nuclear recoils of energies between 10 and 100 keVnr. A cylindrical BC501A detector has been used to tag neutrons that scatter off sodium nuclei in the crystal. Cuts on pulse shape and time of flight have been performed on pulses recorded by an Acqiris DC265 digitiser with a 2 ns sampling time. Measured quenching factors of Na nuclei range from 19% to 26% in good agreement with other experiments, and a value of 25.2 \pm 6.4% has been determined for 10 keV sodium recoils. From pulse shape analysis, the mean times of pulses from electron and nuclear recoils have been compared down to 2 keVee. The experimental results are compared to those predicted by Lindhard theory, simulated by the SRIM Monte Carlo code, and a preliminary curve calculated by Prof. Akira Hitachi.Comment: 21 pages, 13 figure

    MIMAC-He3 : A Micro-TPC Matrix of Chambers of He3 for direct detection of Wimps

    Full text link
    The project of a micro-TPC matrix of chambers of \hetrois for direct detection of non-baryonic dark matter is presented. The privileged properties of He3 are highlighted. The double detection (ionization - projection of tracks) is explained and its rejection evaluated. The potentialities of MIMAC-He3 for supersymmetric dark matter search are discussed.Comment: to appear in Proc. of the 9th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2005), Zaragoza, Sept. 200

    Negative Particle Planar and Axial Channeling and Channeling Collimation

    Full text link
    While information exists on high energy negative particle channeling there has been little study of the challenges of negative particle bending and channeling collimation. Partly this is because negative dechanneling lengths are relatively much shorter. Electrons are not particularly useful for investigating negative particle channeling effects because their material interactions are dominated by channeling radiation. Another important factor is that the current central challenge in channeling collimation is the proton-proton Large Hadron Collider (LHC) where both beams are positive. On the other hand in the future the collimation question might reemerge for electron-positron or muon colliders. Dechanneling lengths increase at higher energies so that part of the negative particle experimental challenge diminishes. In the article different approaches to determining negative dechanneling lengths are reviewed. The more complicated case for axial channeling is also discussed. Muon channeling as a tool to investigate dechanneling is also discussed. While it is now possible to study muon channeling it will probably not illuminate the study of negative dechanneling.Comment: 15 pages, 1 figure, docx fil
    corecore